High-Speed Rotary Ultrasonic Elliptical Milling of Ti-6Al-4V Using High-Pressure Coolant
نویسندگان
چکیده
منابع مشابه
Fatigue of Ti-6Al-4V
Metallic biomaterials have essentially three fields of use; these are the artificial hip joints, screw, plates and nails for internal fixation of fractures, and dental implants. Any of these devices must support high mechanical load and resistance of material against breakage is essential. High mechanical properties are needed for structural efficiency of surgical and dental implants. But their...
متن کاملModeling of Tool Wear Parameters in High-Pressure Coolant Assisted Turning of Titanium Alloy Ti-6Al-4V Using Artificial Neural Networks
Titanium alloy (Ti-6Al-4V) can be economically machined with high-pressure coolant (HPC) supply. In this study, an artificial neural network (ANN) model was developed for the analysis and prediction of tool wear parameters when machining Ti-6Al-4V alloy with conventional flow and high-pressure coolant flow, up to 203 bar. Machining trials were conducted at different cutting conditions for both ...
متن کاملPrecision Grinding of Titanium (Ti-6Al-4V) Alloy Using Nanolubrication
In this current era of competitive machinery productions, the industries are designed to place more emphasis on the product quality and reduction of cost whilst abiding by the pollution-preventing policy. In attempting to delve into the concerns, the industries are aware that the effectiveness of existing lubrication systems must be improved to achieve power-efficient and pollutionpreventing ma...
متن کاملMulti-objective process optimization for micro-end milling of Ti-6Al-4V titanium alloy
Micro-end milling is one of the promising methods for rapid fabrication of features with 3D complex shapes. However, controlling the micro-end milling process to obtain the desired results is much harder compared to that of macro-end milling due to the size effect and uncontrollable factors. The problem is much pronounced when workpiece material is a difficult-to-process material such as titani...
متن کاملInfluence of Microstructure on High-Cycle Fatigue of Ti-6Al-4V: Bimodal vs. Lamellar Structures
The high-cycle fatigue (HCF) of titanium alloy turbine engine components remains a principal cause of failures in military aircraft engines. A recent initiative sponsored by the United States Air Force has focused on the major drivers for such failures in Ti-6Al-4V, a commonly used turbine blade alloy, specifically for fan and compressor blades. However, as most of this research has been direct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Metals
سال: 2020
ISSN: 2075-4701
DOI: 10.3390/met10040500